Worksheet \#5: Double-Replacement Reactions

In these reactions, all you do is look at the names of the reactants, and "switch partners". Just be sure that the new pairs come out with the positive ion named first, and paired with a negative ion.

1. aluminum iodide + mercury(II) chloride \rightarrow
2. silver nitrate + potassium phosphate \rightarrow
3. copper(II) bromide + aluminum chloride \rightarrow
4. calcium acetate + sodium carbonate \rightarrow
5. ammonium chloride + mercury(I) acetate \rightarrow
6. calcium nitrate + hydrochloric acid \rightarrow
7. iron(II) sulfide + hydrochloric acid \rightarrow
8. copper(II) hydroxide + acetic acid \rightarrow
9. calcium hydroxide + phosphoric acid \rightarrow
10. calcium bromide + potassium hydroxide \rightarrow

Examine the products of the reactions on this page, and determine in each whether a gas, water, or a precipitate is formed. Use solubility Table B. 9 on page R54 at the back of your textbook to determine the solubilities of the reaction products. If there is no gas, water, or precipitate produced, put an "X" through the yield sign, because no reaction occurs.

Worksheet \#5: Double-Replacement Reactions

In these reactions, all you do is look at the names of the reactants, and "switch partners". Just be sure that the new pairs come out with the positive ion named first, and paired with a negative ion.

1. aluminum iodide + mercury (II) chloride \rightarrow aluminum chloride + mercury(II) iodide

$$
2 \mathrm{AlI}_{3}+3 \mathrm{HgCl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{HgI}_{2}(\mathrm{ppt})
$$

2. silver nitrate + potassium phosphate \rightarrow silver phosphate + potassium nitrate

$$
3 \mathrm{AgNO}_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{ppt})+3 \mathrm{KNO}_{3}
$$

3. copper(II) bromide + aluminum chloride \rightarrow copper(II) chloride + aluminum bromide

$$
3 \mathrm{CuBr}_{2}+2 \mathrm{AlCl}_{3} \times 3 \mathrm{CuCl}_{2}+2 \mathrm{AlBr}_{3}
$$

4. calcium acetate + sodium carbonate \rightarrow calcium carbonate + sodium acetate

$$
\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}(\mathrm{ppt})+2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

5. ammonium chloride + mercury (I) acetate \rightarrow ammonium acetate + mercury (I) chloride

$$
2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Hg}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \rightarrow 2 \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \text { (ppt) }
$$

6. calcium nitrate + hydrochloric acid \rightarrow calcium chloride + nitric acid

$$
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{HCl}>\mathrm{CaCl}_{2}+2 \mathrm{HNO}_{3}
$$

7. iron(II) sulfide + hydrochloric acid \rightarrow iron(II) chloride + hydrogen sulfide (g)

$$
\mathrm{FeS}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{~S}
$$

8. copper(II) hydroxide + acetic acid \rightarrow copper(II) acetate + water

$$
\mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

9. calcium hydroxide + phosphoric acid \rightarrow calcium phosphate + water

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

10. calcium bromide + potassium hydroxide \rightarrow calcium hydroxide + potassium bromide

$$
\mathrm{CaBr}_{2}+2 \mathrm{KOH} \mathrm{X}_{\lambda} \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{KBr}
$$

Examine the products of the reactions on this page, and determine in each whether a gas, water, or a precipitate is formed. Use solubility Table B. 9 on page R54 at the back of your textbook to determine the solubilities of the reaction products. If there is no gas, water, or precipitate produced, put an "X" through the yield sign, because no reaction occurs.

