1) The gain of electrons by an element is called _____.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

	A) oxidation					
	B) sublimation C) reduction					
	D) disproportion	D) disproportionation				
	E) fractionation					
2)	is redu	aced in the following re	action:			
	Cr ₂ O ₇ 2- +	$-6S_2O_3^{2-} + 14H^+ \rightarrow$	$2Cr^{3+} + 3S_4O_6^{2-} + 7$	7H ₂ O		
	A) Cr ₂ O ₇ 2-	B) S ₂ O ₃ 2-	C) H+	D) S ₄ O ₆ 2-	E) Cr ³⁺	
3)	is the c	oxidizing agent in the r	eaction below.			
	Cr ₂ O ₇ 2-	$+ 6S_2O_3^{2-} + 14H^+ -$	\rightarrow 2Cr ³⁺ + 3S ₄ O ₆ ²⁻ +	7H ₂ O		
	A) Cr ³⁺	B) H ⁺	C) S ₂ O ₃ ² -	D) Cr ₂ O ₇ 2-	E) S ₄ O ₆ 2-	
4)	Which of the following reactions is a redox reaction?					
	_	$D_4 + BaCl_2 \rightarrow BaCrO_0$ + $2Br^- \rightarrow PbBr$ S $\rightarrow CuS$	4 + 2KCl			
	A) (a) only	B) (b) only	C) (c) only	D) (a) and (c)	E) (b) and (c)	
5)	Which substance is	s the reducing agent in	the reaction below?			
	Pb + PbC	$O_2 + 2H_2SO_4 \rightarrow 2PbS$	O ₄ + 2H ₂ O			
	A) H ₂ O	B) Pb	C) PbO ₂	D) PbSO4	E) H ₂ SO ₄	
6)	What is the oxidat	ion number of chromit	ım in the dichromate io	n?		
	A) +7	B) +3	C) +14	D) +12	E) +6	
7)	What is the oxidat	ion number of potassiu	ım in potassium permaı	nganate?		
	A) 0	B) +3	C) +2	D) +1	E) -1	
8)	What is the oxidat	ion number of mangan	ese in the permanganat	e ion, MnO4 ⁻ ?		
	A) +2	B) +5	C) +1	D) +7	E) +4	

9) What is the co	pefficient of the bromide io	on when the following	redox equation is balar	iced?
BrO-	+ $Fe(OH)_2 \rightarrow Br^- + Fe$	(OH) ₃ (basic solu	tion)	
A) 4	B) 3	C) 2	D) 1	E) 5
10) What is the co	pefficient of Fe ³⁺ when the	following equation is	balanced?	
CN-	+ Fe^{3+} \rightarrow CNO^- + Fe^{2}	+ (basic solution)		
A) 1	B) 2	C) 3	D) 4	E) 5
A) three-ele B) four-elec C) two-elec D) one-elect E) six-elect	tron tron tron	fate ion is reduced to s	ulfite ion is a	_ process.
12) The half-reac	tion occurring at the anode	e in the balanced reacti	on shown below is	 :
3MnO	04 ⁻ (aq) + 24H ⁺ (aq) + 5	Fe (s) $\rightarrow 3Mn^{2+}$ (aq)	+ 5Fe ³⁺ (aq) + 12H ₂ C	0 (1)
B) MnO ₄ ⁻ (C) Fe (s) \rightarrow D) 2MnO ₄ ⁻	$ \rightarrow \text{Fe}^{3+} (\text{aq}) + \text{e}^{-}$ $ \text{(aq)} + 8\text{H}^{+} (\text{aq}) + 5\text{e}^{-} \rightarrow \text{Fe}^{3+} (\text{aq}) + 3\text{e}^{-}$ $ \text{(aq)} + 12\text{H}^{+} (\text{aq}) + 6\text{e}^{-}$ $ \text{Fe}^{2+} (\text{aq}) + 2\text{e}^{-}$			
A) provide a B) provide a C) provide a D) provide a	of the salt bridge in an elect a source of ions to react at exygen to facilitate oxidati a means for electrons to tra a means for electrons to tra electrical neutrality in the	the anode and cathode on at the anode. evel from the anode to evel from the cathode to	the cathode. o the anode.	
14) In a voltaic ce A) salt bride B) anode, ca C) anode, sa D) salt bridg E) cathode,	ithode ilt bridge ge, cathode	to the		
15) 1V = A) 96485 C	· B) 1 J/C	C) 1 C/I	D) 1 J/s	E) 1 amr

Table 20.1

Half Reaction	E°(V)
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.359
$Br_2(l) + 2e^- \rightarrow 2Br^-(aq)$	+1.065
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23
$Ag^+ + e^- \rightarrow Ag(s)$	+0.799
Fe^{3+} (aq) + e ⁻ \rightarrow Fe^{2+} (aq)	+0.771
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+0/536
$Cu^{2+} + 2e^{-} \rightarrow Cu (s)$	+0.34
$2H^+ + 2e^- \rightarrow H_2(g)$	0
$Pb^{2+} + 2e^{-} \rightarrow Pb (s)$	-0.126
$Ni^{2+} + 2e^{-} \rightarrow Ni (s)$	-0.28
$Li^+ + e^- \rightarrow Li(s)$	-3.05

- 16) Which of the halogens in Table 20.1 is the strongest oxidizing agent?
 - A) Br₂
 - B) I2
 - C) Cl₂
 - D) F2
 - E) All of the halogens have equal strength as oxidizing agents.
- 17) Which one of the following types of elements is most likely to be a good oxidizing agent?
 - A) transition elements
 - B) alkaline earth elements
 - C) lanthanides
 - D) alkali metals
 - E) halogens

Table 20.1

Half Reaction	E°(V)
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.359
$Br_2(1) + 2e^- \rightarrow 2Br^-(aq)$	+1.065
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23
$Ag^+ + e^- \rightarrow Ag(s)$	+0.799
Fe^{3+} (aq) + e^{-} \rightarrow Fe^{2+} (aq)	+0.771
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+0/536
$Cu^{2+} + 2e^{-} \rightarrow Cu (s)$	+0.34
$2H^+ + 2e^- \rightarrow H_2(g)$	0
$Pb^{2+} + 2e^{-} \rightarrow Pb (s)$	-0.126
$Ni^{2+} + 2e^{-} \rightarrow Ni (s)$	-0.28
$Li^+ + e^- \rightarrow Li (s)$	-3.05

- 18) Using Table 20.1, which substance can be oxidized by $O_2(g)$ in acidic aqueous solution?
 - A) Ni²⁺ (aq)
- B) Br₂ (l)
- C) Ag (s)
- D) Cu²⁺ (aq)
- E) Br⁻ (aq)

Table 20.2

Half-reaction	E° (V)
Cr^{3+} (aq) + 3e ⁻ \rightarrow Cr (s)	-0.74
Fe^{2+} (aq) + 2e ⁻ \rightarrow Fe (s)	-0.440
Fe^{3+} (aq) + e ⁻ \rightarrow Fe^{2+} (s)	+0.771
$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$	+0.154

19) The standard cell potential (E°cell) for the voltaic cell based on the reaction below is ______V.

$$\text{Sn}^{2+}(\text{ag}) + 2\text{Fe}^{3+}(\text{ag}) \rightarrow 2\text{Fe}^{2+}(\text{ag}) + \text{Sn}^{4+}(\text{ag})$$

- A) +1.39
- B) +0.46
- C) +0.617
- D) +1.21
- E) -0.46

20) The standard cell potential (E°_{cell}) for the voltaic cell based on the reaction below is ______V.

$$3Sn^{4+}\,(aq) \ + \ 2Cr\,(s) \ \rightarrow \ 2Cr^{3+}\,(aq) \ + \ 3Sn^{2+}\,(aq)$$

- A) +0.89
- B) +1.94
- C) -0.59
- D) +2.53
- E) -1.02

21) The relationship between the change in Gibbs free energy and the emf of an electrochemical cell is given by

- A) $\Delta G = \frac{-E}{nF}$ B) $\Delta G = -nRTF$ C) $\Delta G = \frac{-nF}{E}$ D) $\Delta G = \frac{-nF}{ERT}$ E) $\Delta G = -nFE$

Table 20.2

Half-reaction	E° (V)
Cr^{3+} (aq) + 3e ⁻ \rightarrow Cr (s)	-0.74
Fe^{2+} (aq) + 2e ⁻ \rightarrow Fe (s)	-0.440
Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (s)	+0.771
$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$	+0.154

22) Which of the following reactions will occur spontaneously as written?

A)
$$Sn^{4+}$$
 (aq) + Fe^{2+} (aq) $\rightarrow Sn^{2+}$ (aq) + Fe (s)

B)
$$3Sn^{4+}$$
 (aq) + $2Cr$ (s) $\rightarrow 2Cr^{3+}$ (aq) + $3Sn^{2+}$ (aq)

C)
$$3\text{Fe (s)} + 2\text{Cr}^{3+}(aq) \rightarrow 2\text{Cr (s)} + 3\text{Fe}^{2+}(aq)$$

$$D) \; Sn^{4+} \left(aq\right) \; + \; Fe^{3+} \left(aq\right) \; \rightarrow \; Sn^{2+} \left(aq\right) \; + \; Fe^{2+} \left(aq\right)$$

E)
$$3Fe^{2+}$$
 (aq) \rightarrow Fe (s) + $2Fe^{3+}$ (aq)

23) The standard cell potential (E°_{cell}) for the reaction below is +0.63 V. The cell potential for this reaction is _____ V when [Zn^{2+}] = 1.0 M and [Pb^{2+}] = 2.0 × 10⁻⁴ M.

$$Pb^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Pb(s)$$

- A) 0.74
- B) 0.52
- C) 0.63
- D) 0.85
- E) 0.41

24) Consider an electrochemical cell based on the reaction:

$$2H^{+}(aq) + Sn(s) \rightarrow Sn^{2+}(aq) + H_{2}(g)$$

Which of the following actions would change the measured cell potential?

- A) lowering the pH in the cathode compartment
- B) increasing the pressure of hydrogen gas in the cathode compartment
- C) increasing the $[Sn^{2+}]$ in the anode compartment
- D) increasing the pH in the cathode compartment
- E) Any of the above will change the measure cell potential.

25) One of the differences between a voltaic cell and an electrolytic cell is that in an electrolytic cell

- A) electrons flow toward the anode
- B) a nonspontaneous reaction is forced to occur
- C) an electric current is produced by a chemical reaction
- D) O₂ gas is produced at the cathode
- E) oxidation occurs at the cathode

26) How many minutes will it take to plate out 2.19 g of chromium metal from a solution of Cr^{3+} using a current of 35.2 amps in an electrolyte cell?

- A) 1.92
- B) 5.77
- C) 346
- D) 115
- E) 17.3

27)	How many grams of Ca metal are produced by the electrolysis of molten CaBr ₂ using a current of 30.0 amp for 10.0 hours?				
	A) 112	B) 448	C) 0.0622	D) 224	E) 22.4
28)) How many grams of copper will be plated out by a current of 2.3 A applied for 25 minutes to a 0.50-M solution of copper(II) sulfate?				
	A) 0.019	B) 1.1	C) 0.036	D) 2.2	E) 1.8×10^{-2}
29)	A voltaic cell is constructed with two silver-silver chloride electrodes, where the half-reaction is				
	$AgCl(s) + e^{-}$	\rightarrow Ag (s) + Cl ⁻ (aq)	$E^{\circ} = +0.222 \text{ V}$		
	The concentrations of is V.	chloride ion in the t	wo compartments are	0.0222 M and 2.22 M, r	respectively. The cell emf
	A) 0.00222	B) 0.232	C) 0.118	D) 0.212	E) 22.2
30)) How many seconds are required to produce 4.00 g of aluminum metal from the electrolysis of molten AlCl ₃ with an electrical current of 12.0 A?				
	A) 2.90×10^5	B) 3.57×10^3	C) 27.0	D) 9.00	E) 1.19×10^3

Advanced Placement Chemistry: 1996 Free Response Questions

7)
$$Sr(s) + Mg^{2+} < ==> Sr^{2+} + Mg(s)$$

Consider the reaction represented above that occurs at 25°C. All reactants and products are in their standard states. The value of the equilibrium constant, K_{eq} , for the reaction is 4.2×10^{17} at 25°C.

- (a) Predict the sign of the standard cell potential, E°, for a cell based on the reaction. Explain your prediction.
- (b) Identify the oxidizing agent for the spontaneous reaction.
- (c) If the reaction were carried out at 60°C instead of 25°C, how would the cell potential change? Justify your answer.
- (d) How would the cell potential change if the reaction were carried out at 25° C with a 1.0-molar solution of Mg(NO₃)₂ and a 0.10-molar solution of Sr(NO₃)₂? Explain.
- (e) When the cell reaction in (d) reaches equilibrium, what is the cell potential?

Advanced Placement Chemistry: 1996 Free Response Answers

- Question 1 is question 4 in previous years, question 2 is question 1 in previous years and questions 3&4 are questions 2&3 in previous years.
- students are now allowed 10 minutes to answer question 1, after which they must seal that portion of the test.
- [delta] is used to indicate the capital Greek letter.
- [square root] applies to the numbers enclosed in parenthesis immediately following
- All simplifying assumptions are justified within 5%.
- One point deduction for a significant figure or math error, applied only once per problem.
- No credit earned for numerical answer without justification.

7)

(a) two points

The sign of the cell potential will be positive because (any one is sufficient):

K is greater than 1 the reaction is spontaneous (occurs) E° for Sr^{2+} is more positive

Standard reduction potential for Sr more negative

 $E^{\circ} = + 0.52 \text{ V}$

Note: only 1 point earned for just E° positive because K_{eq} positive.

(b) one point The oxidizing agent is Mg²⁺

(c) two point

The cell potential would increase Since all ions are at 1 M, Q for the system is 1 and $E^{\circ} = (RT/nF) \ln K$ so as T increases, so should E°

Note: no credit lost if student recognizes K_{eq} dependence on T. For temperature change in this problem, decrease in $\ln K$ term is small relative to the term RT/nF

OR

No change, because in the Nernst equation $E_{cell} = E^{\circ}$ - (RT/nF) ln Q

In Q = 0, and $E_{cell} = E^{\circ}$

Note: this second approach earns 1 point only

(d) two points

 $E_{\text{cell}} \ will \ increase$

In the equation $E_{cell} = E^{\circ}$ - (0.0592 / n) log Q

Q=0.1 therefore log Q is negative therefore term after E° is positive therefore E_{cell} increases

OR

with the concentration of Mg^{2+} larger than that of Sr^{2+} , Le Chatelier's principle predicts the reaction will have a larger driving force to the right and a more positive E_{cell}

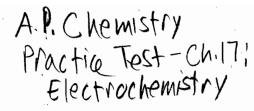
(e) one point

At equilibrium, $E_{cell} = 0$

Note: "balanced", "neutral", or "no net reaction" not accepted

Answer Key

Testname: CH_17_PRAC_TEST_ELECTROCHEMISTRY.TST


MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) C ID: chem9b 20.1-1
- 2) A ID: chem9b 20.1-2
- 3) C ID: chem9b 20.1-3
- 4) C ID: chem9b 20.1-5
- 5) B ID: chem9b 20.1-9
- 6) E ID: chem9b 20.1-10
- 7) D ID: chem9b 20.1-11
- 8) D ID: chem9b 20.1-12
- 9) D ID: chem9b 20.1-15
- 10) B ID: chem9b 20.1-19
- 11) C ID: chem9b 20.1–23
- 12) C ID: chem9b 20.1-25
- 13) E ID: chem9b 20.1–27
- 14) B ID: chem9b 20.1-28
- 15) B ID: chem9b 20.1-32
- 16) D ID: chem9b 20.1–33
- 17) E ID: chem9b 20.1-35
- 18) B ID: chem9b 20.1-37
- 19) C ID: chem9b 20.1-40
- 20) A ID: chem9b 20.1-44
- 21) E ID: chem9b 20.1-45

Answer Key

Testname: CH_17_PRAC_TEST_ELECTROCHEMISTRY.TST

- 22) B ID: chem9b 20.1-47
- 23) B ID: chem9b 20.1-49
- 24) E ID: chem9b 20.1-51
- 25) B ID: chem9b 20.1-59
- 26) B ID: chem9b 20.1-60
- 27) D ID: chem9b 20.1-62
- 28) B ID: chem9b 20.1-65
- 29) C ID: chem9b 20.2-2
- 30) B ID: chem9b 20.2-10

(1) LEO goes GER

(2) method one: $(r_2 \circ 7^2 \Rightarrow c_{r_2} \circ 7 \Rightarrow$

when $Cr_2O_7^2 \rightarrow Cr_3^{3+}$, the oxidation # gos down from +6 +0+3, which is reduction,

method two: C12072 -> Cv3+ G6e+144+ C12072 -> 2Cv3+ + 7H20

Gain electrons = reduction

3) oxidizing agent = species which is reduced = thing which causes something else to be oxidized

since Crop is reduced, it is the oxidizing agent (

(5z03²⁻ is oxidized to 5y06²⁻)

(5z03²⁻ is oxidized to 5y06²⁻)

(5z03²⁻ 5y06²⁻)

(5z03²⁻ 15 0xidized to 5y06²⁻)

(4z,5) (2) z

(4) Cut 5 -> Cu5 redox

None of the other seactions has a change in oxidation #'s

(5) reducing agent 5 thing which is oxidized pb = choice(8)

Pb -> Pbscy

Anode = oxidation@ Fe > Fe 3+ +3e-GER lose electrons axidation gain e lectrons reduction Anode=oxidation Codrad= Voltaic=galunnic=spontaneous so e's go from ande-scathole strongest o. A. = gets reduced most easily, since Fz+Ze->ZF- has largest E°, it gets reduced west easily (in comparison with the standard hydrogen electrod),

(M) E

02 + 4H+ + 4e -> 2H20 +1.23 A) I don't see any data about Ni & for higher)

B) I don't see any species of Br with an ax #>0 (c) Ag -> Ag+te- -0.799V Tooks good to me (a) I don't know of any 0x #'s fer Cu greater than +2 (b) 2Br → Brz + Ze -1.065 V also looks good to me Ag and Br should both be axidized by Oz in agreeus solution because the overall East wilke >1 20) 20+5n++ > 5n2+ &= +0.154V $C\Gamma \rightarrow C\Gamma^{3+}+3e^{-} \epsilon^{0} = +0.74V$ +0.89 V (A) (21) DG=-NFE (E) (23) $\xi = \xi^{\circ} - \frac{0.0592}{n} \log \hat{Q} = +0.63V - \frac{0.0592}{2} \log \left(\frac{1.0}{2\times0.4} \right)$ 0.63 - 0.109 $\int_{\mathbb{R}^{2+}} \frac{[z_n^{2+}]}{[p_n^{2+}]} = \frac{10}{2 \times n^{-4}}$ $P_0^{2+} + \underbrace{(e)}_{P_0} P_0$ $Z_n \rightarrow Z_n^{2+} \underbrace{(2e)}_{P_0}$ N = 2

reduction = cathode 2H+2e-> Hz oxidation= anode $Sn \rightarrow Sn^{2+} + 2e^{-}$ · (A) Yes - lower pH = higher [HT]. If [HT] increases, & decreases, cxn shifts formard, (B) Xes- higher [Hz] means greater Q, ranshifts left, Edermones (same as higher PH,) (B) (voltaic = galvanic) 26) 2.19 gCrx 1 moler 3 mole - 46485 C x 15 < 1 min = 5.77 min Cr3+ + 3e -> Cr $(27) \quad Ca^{2+} + 2e^{-} \rightarrow Ca$ 10.0 hrs x 60min x 60s x 30.0 C x 1 mole x 1 mole x 40.085 = 224 g Ca (28) Cu2+ 2e- -> Cu 25 min x 60s x 2.3 C | mole- x | mole- x | mole- x | 63.559 = 1.1 q B

which way will electrons flow spontaneously (voltaic=galvanic=spontaneous)? well, the conc's of Claven't equal, so compartment or rightmust desirace [ce-] and compartment on left must increase [ce-]. When Agcl takes an e-; clais produced, causing an increase in [cl-].

(cont'd) 2.22M=[ce-] [ce] = 0.0222M losing electrons gaining electrons [ce-] decreasing [ce-] increasing Ag(s)+Cl-> AgCl(s) + e-Ag (lis) te- > Agis+ (liag) Ag(l(s) + e -> Ag(s) + (l (ag) 0.0222M reduction: Ag (s) + Cl(ag) -> Ag (l(s) + e--0.222V oxidation! 0.0 V $(Iing) \longrightarrow Q^{-1}$ 0,0222M $\mathcal{E} = \mathcal{E}^{\circ} - \frac{.0592}{N} \log Q$ $= 0 - \frac{10592}{1} \log \frac{10222}{2.22} = 0 - (0592) \log 0.01)$ = -.0592(-2) $= 0.118 \, \text{V}(c)$

4.00gx 1 mod Al × 3 mode = 96485 C = 15 = 3580 S 1 mod Al × 1 mode = × 12.0C = 3.58 × 103 S $Al^{3+}+3e^{-}\rightarrow Al$